POWER INTEGRITY THROUGH PDN IMPEDANCE MEASUREMENT

Andrea D’Aquino
Product manager – Vector Network Analyzers

ROHDE & SCHWARZ
Make ideas real
POWER INTEGRITY AND SIGNAL INTEGRITY

Adaptation
POWER INTEGRITY AND SIGNAL INTEGRITY

Usually small value!

\[Z_{PDN\ target} < \frac{V_{L\ noise}}{I_{L\ worst-case}} \]
HOW TO MEASURE IMPEDANCE WITH VNA

1. Reflection setup

2. Transmission setup

3. Shunt-transmission setup
REFLECTION SETUP

\[\Gamma = \frac{b_1}{a_1} = S_{11} \]

\[\Gamma = \frac{Z_L}{Z_1} - 1 \]

\[\frac{Z_L}{Z_1} + 1 \]

Measurement
REFLECTION SETUP

\[\Gamma = \left. \frac{b_1}{a_1} \right|_{b_2=0} = S_{11} \]
REFLECTION SETUP

\[\Gamma = \frac{b_1}{a_1} \bigg|_{b_2=0} = S_{11} \]

\[\Gamma = \frac{Z_L}{Z_1} - 1 \]

\[\frac{Z_L}{Z_1} + 1 \]

\[Z_L = Z_1 \cdot \frac{1 + S_{11}}{1 - S_{11}} \]

Z probe = 50 Ω \(\rightarrow\) \(Z_L = 50 \Omega\)

Z probe \(\neq\) 50 Ω \(\rightarrow\) \(Z_1 = 50 \Omega + \text{Probe } Z\)
REFLECTION SETUP – VALIDITY

\[Z_L = 50 \cdot \frac{1 + S_{11}}{1 - S_{11}} \]

Most wave reflected \((\Gamma \to 1)\)?

High uncertainty!

Approx. 10% uncertainty between 10 \(\Omega\) and 200 \(\Omega\)
TRANSMISSION SETUP

Low uncertainty only at high Z

$$Z_L = \frac{50}{2} \cdot \left(\frac{1 - S_{21}}{S_{21}} \right)$$
TRANSMISSION SETUP

\[\frac{b_2}{a_1} \bigg|_{b_1=0} = S_{21} \]
SHUNT-TRANSMISSION SETUP

\[Z_L = \frac{50}{2} \cdot \left(\frac{S_{21}}{1 - S_{21}} \right) \]
SHUNT-TRANSMISSION SETUP
SHUNT-TRANSMISSION SETUP

Usually small value!

\[Z_{PDN\ target} < \frac{V_{L\ noise}}{I_{L\ worst-case}} \]

\[Z_L = \frac{50}{2} \cdot \left(\frac{S_{21}}{1 - S_{21}} \right) \]

Can measure in mΩ range
SHUNT-TRANSMISSION SETUP

Measurement of 32µΩ (@ DC) resistor
Not enough Z span?

\[Z_L = \frac{Z_0}{2} \cdot \left(\frac{S_{21}}{1 - S_{21}} \right) \]

Use high-Z probes!
SHUNT-TRANSMISSION SETUP

\[Z_L = \frac{50}{2} \cdot \left(\frac{S_{21}}{1 - S_{21}} \right) \quad \text{Approx. 1 x mΩ to 1 x kΩ} \]

\[Z_L = \frac{10 \cdot 50}{2} \cdot \left(\frac{S_{21}}{1 - S_{21}} \right) \quad \text{Approx. 10 x mΩ to 10 x kΩ} \]
SHUNT-TRANSMISSION SETUP – 10:1 PROBES